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Abstract.The Relevance Vector Machine (RVM) is a generalized linear model that

can use kernel functions as basis functions. Experiments with the Matérn kernel in-

dicate that the kernel choice has a significant impact on the sparsity of the solution.

Furthermore, not every kernel is suitable for the RVM. Our experiments indicate

that the Matérn kernel of order 3 is a good initial choice for many types of data.
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1 Introduction

Suppose that N noisy observations of an unknown function f : Rd → R are
available:

Yi = f(Xi) + εi (1)

Suppose that f can be expressed in a form of some infinite expansion:

f(x) =
∞∑

j=1

θ∗j gj(x) (2)

where {gj(x)}∞0 is an unknown family of basis functions. In the regression
problem estimating f reduces to estimation of a suitable truncation of the
vector of all parameters Θ = (θ∗0 ...θ∗n)T , using the observations {Xi, Yi}N

i=1

and (2) is called a generalized linear model (GLM). To limit the number of
parameters such that the coefficients θ∗j decrease in a certain way as j →
∞ some smoothness or regularity assumptions have to be stated about f.
Generally speaking, smoothness conditions require that the unknown function
f belongs to a particular restricted functional class. Otherwise, convergence
can be arbitrary slow[1].

One commonly used implementation of (2) is the Parzen-Rosenblatt den-
sity estimator defined as:
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f̂N (x) =
1

Nhd
N

N∑
i=1

k

(
xi − x

hN

)
(3)

where the positive number hN is called the bandwidth or scaling factor and
the function k is called a kernel. A kernel function is a positive definite func-
tion [2] which decreases very fast outside the window [x− hN , x + hN ], thus,
the estimator (3) is a moving average of the observations belonging to that
window. The accuracy of the approximation (3) depends on how densely obser-
vation points fill the input space. Efficient uniform error bounds are available
for kernel estimators when the function f is further restricted to the class of
functions bounded by a polynomial of (unknown) orders [1]. Noisy observa-
tions introduce error in the estimation of the regression coefficients θ∗j . The
total mean square error of the estimates will be the sum of the stochastic part
(because of the noise) and of the bias due to the approximation error. Thus,
the optimal choice for the regression problem will depend more on the charac-
teristics of the kernel function and less on the characteristics of the unknown
f.

The use of kernels has received considerable attention in machine learning
[2]. The kernel matrix is symmetric and positive definite matrix, thus, it can
be defined as some kind of similarity between pairs of data points such as
k(x, x

′
) =

〈
Ψ(x), Ψ(x

′
〉
. The transform Ψ : X → H from X, the input space

to H, is often used to embed the training data into a high dimensional feature
space. The assumption is that it could be easier to obtain the solution for a
specific problem in the feature space. Using this technique, there is no restric-
tion on the dimensionality of the data, since usually the number of examples
N is much larger than the number of dimensions d.

The freedom in the choice of the mapping Ψ enables us to design a
large variety of similarity measures adapted to the given problem [2], [10].
In practice, most applications of kernel methods just use the Gaussian kernel
k(x, xi) = exp−||x−xi||2/2σ2

where the ‖‖ operator indicates the distance be-
tween the any two points, and σ is the width parameter of the Gaussian. The
Gaussian kernel is also called the universal kernel. It is an infinitely smooth
function, thus, may not be the best choice for noisy datasets.

The Matérn kernel [2], [3] is unique because it has an extra parameter v to
explicitly control the smoothness of the kernel. The Matérn function of order
v belongs to the class of functions bounded by a polynomial of order v. One
formulation of the Matérn kernel takes the following form:

M(x, xi) =
2(
√

v
σ ||x− xi||)v

Γ (v)
Kv(2

√
v

σ
||x− xi||) (4)
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where Γ (v) is the gamma function and Kv(x) is the modified Bessel function
of the second kind1of order v, and σ in this case is the width scaling parameter
of the Matérn function.

When v → ∞ the Matérn kernel degenerates to the Gaussian kernel and
when v=0.5 it degenerates to the exponential kernel . Thus, the Matérn kernel
is able to define a wide range of kernel functions. Figure 1 illustrates the
Matérn kernel with different degrees of smoothness and its ability to behave
as the Gaussian and the exponential kernels.

Fig. 1. The Matérn Kernel; w denotes the standard deviation (the width) and v is
the smoothness parameter

Sparsity is generally considered a desirable feature of a machine learning
algorithm. Sparse algorithms prefer a simple solution. In the context of GLM,
as sparse solution will have a small number of non-zero coefficients. The Rel-
evance Vector Machine (RVM) is a method for training a GLM such as (2).
In the literature, it was presented as a method for sparse kernel regression.

y(x,w) =
N∑

i=1

wi · k(x, xi) + ε (5)

k(x, xi) is a bi-variate kernel function centered on each one of the N training
data points xi, w = [wi...wN ]T is a vector of regression coefficients, and ε is
the noise. This means that it will select a subset, often a small subset, of the
kernel functions in the final model.

Though it is stated that the RVM can use any basis functions [4], the
examples in the literature apply only the Gaussian Kernel. The novelty in this

1 Kv(z) =
Γ (v+ 1

2 )(2z)v

√
π

∫∞
0

cos(t)

(t2+z2)
v+ 1

2
dt
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paper is the first investigation of the RVM for kernels other than the Gaussian,
and specifically the Matérn kernel. We study for the first time the effect of
the smoothness of the kernel function on the convergence and sparseness of
the RVM solution for datasets with various attributes such as non linearity
and noise.

The rest of this paper is as follows: section 2 introduces the RVM algo-
rithm; section 3 presents experiments with different kernels; and section 4
concludes with a discussion.

2 The RVM Algorithm

2.1 The Regression RVM

Consider a dataset of input-target pairs {Xi, ti}N
i=1. Each target ti is assumed

Normally distributed with mean y(xi) and uniform variance σ2 of the noise
ε so p(t|x) = N(t|y(x), σ2) . The targets are also assumed jointly Normal
distributed as N(µ,Σ), where (µ, Σ) are the unknowns to be determined by
the algorithm. The conditional probability of the targets given the parameters
and the data can now be expressed as (6).

p(t|w, σ2) = (2πσ2)
N
2 exp

{
− 1

2σ2
||t−Φw||

}
(6)

where the data is hidden in the NxN kernel function matrix Φ representing
all the pairs Φi,j = k(xi, xj), i, j ∈ [1...N ].( Φ could be extended to include a
possible bias term).

The goal of the RVM is to accurately predict the target function, while
retaining as few basis functions as possible in (5). Sparseness is achieved via
the framework of sparse Bayesian learning and the introduction of an addi-
tional vector of hyper parameters αi that controls the width of a Normal prior
distribution over the precision of each element of wi.

p(wi|αi) =
√

αi

2π
exp(1− 1

2
αjw

2
j ) (7)

A large parameter αi indicates a prior distribution sharply peaked around
zero. For a sufficiently large αi, the basis function is deemed irrelevant and wi

is set to zero, maximizing the posterior probability of the parameters’ model
(7). As an analogy to the Support Vector Machine [5], the non-zero elements
of w are called Relevance Values, and their corresponding data-points are
called Relevance Vectors (RVs).

The solution is derived via the following iterative type II maximization of
the marginal likelihood p(t|α, σ2) with respect to α and σ2.

αnew
i =

1− αiΣii

µ2
i

(8)
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(σ2)new =
||t−Φµ||2

N −ΣN
i=1(1− αiΣii)

(9)

The unknowns (µ,Σ) are computed as:

Σ = (ΦTBΦ + A)−1 (10)

µ = ΣΦTBt (11)

where B ≡ σ−2INxN . The basic RVM algorithm cycles between (8),(9),(10),(11)
reducing the dimensionality of the problem when any αi larger than a preset
threshold. The algorithm stops when the likelihood p(t|α, σ2) ceases to in-
crease. Further information about the algorithm, as well as priors for (α, σ2)
is presented in [4].

2.2 The Classification RVM

In the classification problem each target ti is Binary: ti ∈ {0, 1}. The model
(5) is assumed to be noise-free. That is σ2 ≡ 0. Note that equation (5) can
not produce a binary function by itself without an additional rounding to
the closest value {0, 1}. The sigmoid function ρ(y) = 1/(1 + e−y) is used to
generalize the linear model. The main idea of the sigmoid function is to make
an approximation of the regression case to the two-class classification problem.
With the sigmoid link function we can adopt the Bernoulli distribution P (t|x)
and rewrite the likelihood as:

p(t|w) =
N∏

i=1

ρ
(
ΦT

i w
)ti

(
1− ρ(ΦT

i w)
)1−ti (12)

In the classification RVM framework, we need to find two solutions to two
different coupled problems, an optimization problem and a regression RVM
problem [4]. The multi-class problem is solved with an assembly of binary
classifiers. The classification RVM will not be considered in this paper

2.3 Attributes of the RVM

The RVM is an approximate Bayesian method, thus it can generate not only
a predicted values, but also the probability distribution of the values [6]. For
further details of the basic RVM look in [4]. For a discussion of convergence
and sparseness look in [7].

The matrix inversion operation in (10), which requires O(N3) operations
is the computationally intensive part of the algorithm. The matrices Φ and Σ
are full rank, thus require initially O(N2) space complexity. Furthermore, it
is common that the inversion of a large matrix becomes ill-conditioned after
several cycles even for positive definite matrices unless the parameters of the
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kernel function are optimized. These problems limit the practicality of the
basic RVM algorithm for moderately sized problems. Fortunately, practical
approaches were developed for reducing the runtime complexity to O(N2) [8].

An important step in GLM learning is to find a feature space - a pro-
jection of the data on highly dimensional space - where the data is linear
for regression problems and linearly separable for classification problems. The
choice of projection (the kernel function) is important for the accuracy and the
convergence of the RVM. Note that the RVM typically produces very sparse
solutions compared to the SVM, when its kernel is as the SVM kernel [4].

3 Comparative Experiments

3.1 The Matérn Kernel

The purpose of the following experiments is to check the sensitivity of the
RVM to the kernel choice, the smoothness of the kernel function and various
attributes of the dataset. In the Matérn kernel it is possible to control the
smoothness of the kernel function. Thus, the following types of the kernel
functions were considered: Gaussian kernel, Matérn of orders v = 1, 2, 3, 4 (re-
spectively Matérn1, Matérn2, Matérn3 and Matérn4). Higher orders Matérn
are not that different than the Gaussian. Moreover, we also test the finitely
supported kernel function.

Instead of taking a set of unrelated benchmark data sets, we used the
Pumadyn family of datasets2. These are eight synthetic datasets generated
from a realistic simulation of the dynamics of the Puma 560 robotic manipu-
lator. The regression problem is to predict the angular acceleration of one of
the robotic links. Each dataset has a unique combination of three attributes:
dimensionality (8 or 32 attributes), non-linearity (fairly linear or non-linear),
and output noise (moderate or high). Table 1 present the details about the
datasets and the split between the training set and the test set. We selected
this specific set of benchmark datasets in order to study for the first time
the dependency of the RVM solution on both the selected kernel and the
attributes of the dataset (such as non-linearity).

We used a MATLAB implementation of the working set RVM from [8]. The
Training set was used for the learning phase, and the error was measured on
the testing set. Each kernel was simulated for 10 different repetitions and the
same randomizations were used for testing each kernel. The width parameter
for each kernel was optimized manually via cross-validation experiments on the
training set. Table 2 presents the width parameters found for each combination
of kernel and dataset.

2 www.cs.toronto.edu/ delve/data/pumadyn/desc.htmwww.cs.toronto.edu/ delve
/data/pumadyn/desc.html
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Table 1. Details of the Pumadyn family of datasets

Name Size # of Attributes Level of noise Level of non linearity Training set/test set

8fh 8192 8 high fairly linear 6144/2048
8fm 8192 8 moderate fairly linear 6144/2048
8nh 8192 8 high non-linear 6144/2048
8nm 8192 8 moderate non-linear 6144/2048
32fh 8192 32 high fairly linear 6144/2048
32fm 8192 32 moderate fairly linear 6144/2048
32nh 8192 32 high non-linear 6144/2048
32nm 8192 32 moderate non-linear 6144/2048

Table 2. The selected width parameters

Name Matérn1 Matérn2 Matérn3 Matérn4 Gauss

8fh 3 4 8 18 2
8fm 5 4 8 25 2
8nh 7 8 16 25 2
8nm 12 14 18 32 10
32fh 50 50 50 90 25
32fm 20 25 125 175 25
32nh 180 190 135 135 135
32nm 135 140 150 160 60

We used two measures in these experiments, the number of RVs and the
accuracy (RMSE). Tables 3 and 4 presents the comparative RMSE and the
comparative number of RVs respectively. The standard deviation of each mea-
sure is also presented in the tables.

Table 3. Comparative RMSE

Name Matérn1 Matérn2 Matérn3 Matérn4 Gauss

8fh 3.14±0.04 3.14±0.05 3.16±0.06 3.17±0.04 3.14±0.05
8fm 1.07±0.02 1.05±0.02 1.05±0.02 1.23±0.03 1.05±0.02
8nh 3.24±0.06 3.22±0.04 3.25±0.03 4.25±0.06 3.25±0.04
8nm 1.18±0.02 1.14±0.02 1.20±0.02 3.54±0.03 1.22±0.02
32fh .021±3*10−4 .02±3*10−4 .02±3*10−4 .02±3*10−5 .02±3*10−4

32fm .005±7*10−5 .005±7*10−5 .005±9*10−5 .005±1*10−5 .005±6*10−5

32nh .034±7*10−4 .033±5*10−4 .033±4*10−4 .033±3*10−5 .033±5*10−4

32nm .028±5*10−4 .027±5*10−4 .027±3*10−4 .027±5*10−5 .027±5*10−4
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Table 4. Comparative number of RVs

Name Matérn1 Matérn2 Matérn3 Matérn4 Gauss

8fh 46.7±5.3 36.5±2.5 34.2±1.7 12.3±1.4 38.5±2.9
8fm 136.1±10.3 79.8±3.2 57.2±2.6 16.1±1 70.6±3.1
8nh 160.7±8.5 93±2.47 45.9±5.8 19.3±1.4 142.4±8
8nm 530.4±85.4 173.3±6 82.8±3.9 17.7±1.3 82.8±2.5
32fh 240.8±37.1 41±11 38.6±3.4 11.3±2.5 79.1±3.7
32fm 265.1±14.3 64±7 34.5±4.3 17±4.6 140±13.4
32nh 268.3±19.5 28±21.5 7.3±1.6 7.3±1.4 9.9±1.7
32nm 324±10 31.1±12.5 16.9±8.6 8.8±2.6 67.7±5.2

Analysis of the results in tables 2, 3, 4 indicates that:

• The Gaussian and Matérn of orders 1,2,3,4 achieved a similar accuracy.
Thus, from an accuracy point of view there is no difference among them.
The Matérn4 demonstrates a significantly lower accuracy for three of the
datasets.

• The Matérn4 achieved the sparsest results (less than 0.3%) for all the data
sets. The Matérn3 is also typically sparser than the Gaussian, however, it
has a similar accuracy as the Gaussian. It seems that the Matérn4 presents
a danger of under-fitting the data.

• Regarding which kernel is more suitable for a given problem (non-linearity,
noise) it is hard to decide. While the Matérn4 obtained the sparsest results
for all the datasets, the Matérn3 also retained the accuracy, thus, it is
recommended.

The main contribution of these experiments is that we found a kernel which
is better than the Gaussian - we suggest using the Matérn of order 3.

We can also analyze for the first time the sensitivity of the RVM to different
attributes of the dataset, and as expected, a decrease in the noise level (e.g.
from puma8fh to puma8fm) results in an increase in the number of RVs, since
less features of the function are now masked by the noise.

3.2 The Finitely Supported Matérn Kernel

The typical kernel measures the distance/similarity between any two points
in the data. In a finitely supported kernel, we set the corresponding value
in the kernel ma-trix to zero whenever the similarity between two points xi

and xj is below a certain threshold. In a typical dataset, data is distributed
among separate clusters in the multidimensional space. Effectively, a data is
similar only to data in the same cluster, and will not be considered similar
to data from different clusters. Thus, a finitely supported kernel matrix is
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expected to containing a majority of zero values (a sparse matrix). The ad-
vantage in a sparse matrix is that there exist efficient sparse linear algebra
and sparse matrix computation techniques [9] that reorder the nonzero values
to be around the diagonal of the kernel matrix and invert a sparse matrix in
O(N2)- effectively accelerating the RVM.

Simply truncating the kernel below a certain threshold does not result in
a positive definite matrix in general. However, any kernel can easily become
a compactly supported kernel by multiplying it with the ”hyper-triangular”
kernel (13).

max

{(
1− ||xi − xj ||

σ

)v

, 0
}

(13)

where σ > 0 is a width parameter (same as the one used in the regular
Matérn kernel) and v ≥ (d + 1)/2 in order to insure positive definiteness (d is
the dimensionality of the data which generated the kernel matrix).

For the experiments with the finitely supported Matérn kernel, we used
only the first four Pumadyn datasets from table 1 which have d = 8, thus we
choose v = 5 (for a higher smoothness than that, the Matérn is quite similar
to the Gaussian). We used the same experimental setting as before. Table 5
presents the results of the experiments with the order 5 finitely supported
hyper-triangular kernel. The finitely supported Matérn kernel was generated
by the multiplication of (13) with (4). Unfortunately, for three of the datasets
we failed to find an appropriate kernel width that leads to convergence of the
RVM. Maybe the high noise and relative linearity of the first dataset facilitates
finding a single appropriate width parameter.

Table 5. Experiments with finitely supported kernels

Name Matérn5fs Triangular5

width Time RV Rmse width Time RV Rmse

8fh 50 394±
140

128.4±
13.8

3.17±
0.04

45 363±
160

129±
20.4

3.2±
0.05

8fm no convergence no convergence
8nh no convergence no convergence
8nm no convergence no convergence

Comparing the results in table 5 to the results in tables 2, 3, 4, we see
that:

• The hyper-triangular kernel of order 5 behaved fairly similar to the finitely
supported Matérn kernel of order 5. When the effective width of the
Matérn is larger than the effective width of the Triangular kernel, this
could be expected, since in this case the Matérn will have a fairly con-
stant value within the effective support of the Triangular kernel, and the



10 David Ben-Shimon and Armin Shmilovici

multiplication of the kernels will not differ much from the values of the
Triangular kernel.

• The accuracy of the finitely supported kernels is fairly similar to that of
the regular kernels, while the number of RVs is much larger.

• A careful analysis of the two kernels that did converge, indicate 0% sparsity
for the width parameters selected.

While these experiments are not conclusive, it indicates that finite supported
kernels are not a good choice for the RVM - the algorithm does not converge
for sparse kernels.

4 Discussion

The problem of selecting the best kernel and tuning its parameters lies in
the core of all the kernel based methods. In this paper we investigated for
the first time the sensitivity of the RVM to the kernel choice. We found that
Matérn of order 3 provides a fair trade-off between sparsity and error. Con-
sidering that cubic splines (splines of order 3) are well known to provide good
approximations for many types of functions, this is not surprising.

It turns out - unlike conjectured by [4] - that not every kernel is suitable
for the RVM. Surprisingly, when we trained the RVM using the finitely sup-
ported Matérn kernels, the results were very poor convergence if any, and a
very long training time relatively to the ordinary Matérn kernels. One possi-
ble explanation to the poor results could be the existence of regions of zero
derivative of the finitely support kernels which causes the RVM to slow down,
or stop its convergence. This phenomena merits further investigation, since
sparse linear algebra can potentially accelerate the RVM.

We did not manage to answer the question if there is a kernel that is best
suited for a given problem such as non-linearity, noise or whether kernels for
classification should be different than kernels for regression. However, this is
the first time (to the best of our knowledge) that a kernel different than the
Gaussian, or specifically the Matérn family, was ever used for the RVM.
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